UCL DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING COMMUNICATIONS AND INFORMATION SYSTEMS GROUP

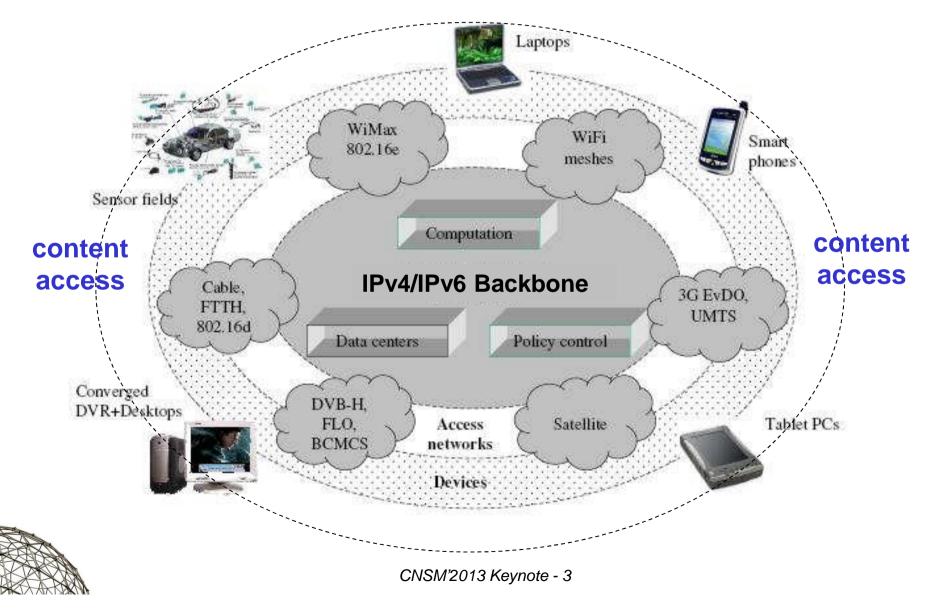
IFIP/IEEE CNSM 2013 Keynote Speech

Information-Centric Networking and In-Network Cache Management: Overview, Trends and Challenges

Prof. George Pavlou <u>http://www.ee.ucl.ac.uk/~gpavlou/</u> Communications and Information Systems Group Dept of Electronic & Electrical Engineering University College London, UK

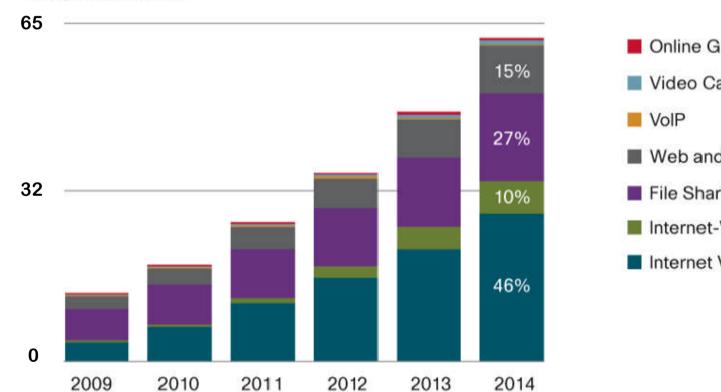
Internet-based Content

- The vast majority of Internet interactions over the last years relate to <u>content access</u>
 - P2P overlays (e.g. BitTorrent, eMule, live streaming)
 - Media aggregators (e.g. YouTube, GoogleVideo)
 - Over-the-top video (e.g. Hulu, iPlayer)
 - Content Delivery Networks (e.g. Akamai, Limelight)
 - Social Networks (e.g. Facebook, MySpace)
 - Photo sharing sites (e.g. Picasa, Flickr)


- ...

- New approaches are required to cater for the explosion of video-based content
- Continue throwing more capacity cannot work anymore!

The Emerging Content-Oriented Internet



Expected IP Traffic Growth Until 2014

- According to the Cisco Visual Networking Index (VNI) 2010:
 - Global IP traffic will quadruple until 2014
 - Global Internet video traffic will surpass P2P traffic in 2010
 - Approx. 55% of the overall Internet traffic will be video by 2014
 - Global mobile data traffic will double every year until 2014
 - Approx. 65% of the overall mobile traffic will be video by 2014
- Infrastructure evolution needs to be partnered with novel approaches and associated business models

Expected IP Traffic Growth Until 2014 (cont'd)

UCL

Exabytes per Month

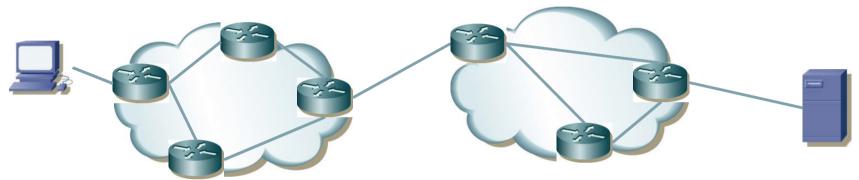
CNSM'2013 Keynote - 5

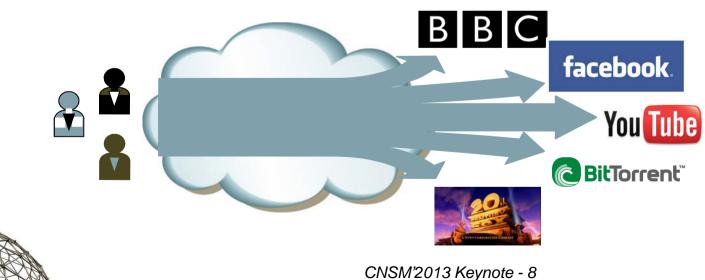
P2P Overlays and CDNs

- Peer-to-Peer (P2P) Overlays: started from <u>file sharing</u> and evolved to <u>multicast-streaming</u> real-time video through overlay nodes
 - Content object names are resolved to candidate peers
 - Self-organized, adaptive, fault-tolerant content distribution
 - Dynamic content replica placement according to demand
- Content Distribution Networks (CDNs): they support <u>anycast</u> by choosing the most appropriate (i.e. topologically close) content replica to maximise user QoE
 - Use DNS-based redirection
 - Mostly offline content replica placement according to expected demand
- Both P2P overlays and CDNs make the content server transparent by accessing "<u>named content</u>", allowing access to cached copies
 - A first step towards an information-oriented communication model

UCL

Current Content Naming and Security Problems

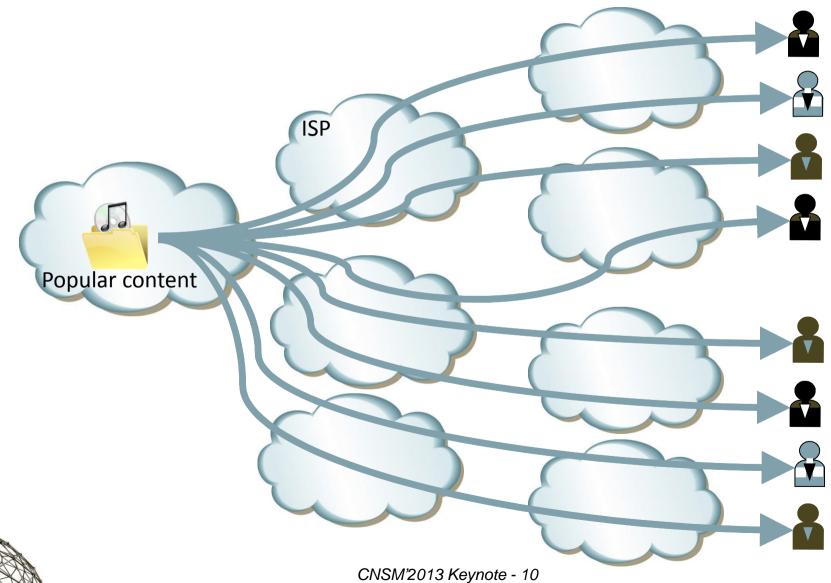

- Content URIs are effectively object locators, resolving to the IP address of the hosting server i.e. <u>location-dependent</u>
 - Binding breaks when object moves or when site changes domain
 - Replicas all have different URIs, appearing as different objects
 - Unique, persistent, location-transparent naming is required
- The current Internet security model provides <u>connection</u> <u>endpoint</u> as opposed to <u>content object</u> authentication
 - Once an object copy has left the origin server, its authenticity <u>cannot</u> <u>be verified</u> anymore, which is a problem for caching
 - In an information-centric approach it is important to be able to <u>authenticate content objects</u> as opposed to connection endpoints



Current Paradigm Shift

<u>Node-centric design</u>: sharing network resources

Information-centric design: content access and distribution

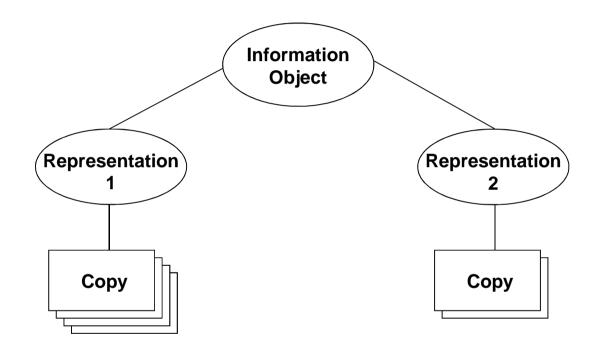

Information-Centric Networking

- Given that users are interested in named content and not in node endpoints, is there a clean architectural approach to address the relevant requirements?
 - All encompassing instead of domain-specific application-level add-ons
 - Provide an enhanced P2P/CDN-like paradigm within the network
- Information-Centric Networking (ICN) targets general infrastructure that provides <u>in-network caching</u> so that content is distributed in a scalable, cost-efficient & secure manner
 - Exploits the large amounts of DRAM in current generation routers
 - Receiver-driven model subscribe/get objects of interest
 - Support for location transparency, mobility & intermittent connectivity

Flash-Crowd Effect Due to Content Popularity

Scalable Cache-based Content Distribution ISP 50 Popular content "Time-shifted multicast" model

CNSM'2013 Keynote - 11


In-Network Caching Approaches

- In-network caching is dynamic reactive (as in P2P overlays) and not offline proactive (as in CDNs) because of required line speed operation
- Different options for the granularity of caching:
 - <u>Chunk-level</u>: caching information chunks an information object is split into a number of fixed-size information chunks
 - <u>Packet-level</u>: caching individual packets as transmitted through the network – typical size 1.5Kb each – as proposed by CCN
 - But <u>not at the file/information object level</u> as in overlay approaches e.g. CDNs
- Distributed <u>line speed</u> decision making is required w.r.t. what/where to cache and what to drop to maximize gain

Information Objects

The representations of an information object (e.g. different encodings) and their cached copies all share the <u>same ID</u>

Content Naming

- Information objects are named by <u>location-independent</u> IDs
- Given that in ICN security applies to information, object IDs in many ICN architectures incorporate security tags
 - Non human-friendly IDs
 - But human-friendly names can also be associated with IDs
- There can be hierarchical names, flat self-certifying names or combined schemes

Name Resolution and Routing

- Two key approaches: <u>two-phase</u> and <u>one-phase</u>
- In two-phase approaches (evolutionary), name resolution takes place first by mapping the content ID to locators, with the most suitable one selected (anycast)
 - <u>Content name resolution servers</u> are required e.g. DNS++
 - Routing to the content source and subsequent content delivery simply use locators i.e. IP addresses
- In one-phase approaches (radical/revolutionary), content ID-based routing is used natively within the network
 - Content-ID based routing uses content state in the network ("breadcrumps") and supports <u>anycast</u> to the closest copy
 - The content delivery path is typically the reverse path of the request,
 i.e. symmetric as opposed to the current asymmetric routing

Name Resolution Scalability

- Let's look at the two phase evolutionary approach
- A vast amount of information objects
 - Currently more than 1 trillion unique URLs (Google 2008)
 - 26 billion web pages (www.worldwidewebsize.com)
 - 119 million 2nd level domain names in the DNS (end of 2010)
- Possible to operate DHTs with >2 million nodes
 - For 1000 trillion objects (2¹⁵) with 100 bytes per record and no replication/caching, 50Gb of DRAM is necessary
 - With 10 replicas/cached copies and 1Kb per record, 5Tb of RAM is necessary and can be supported with SSD, albeit expensively

Key Projects and Approaches

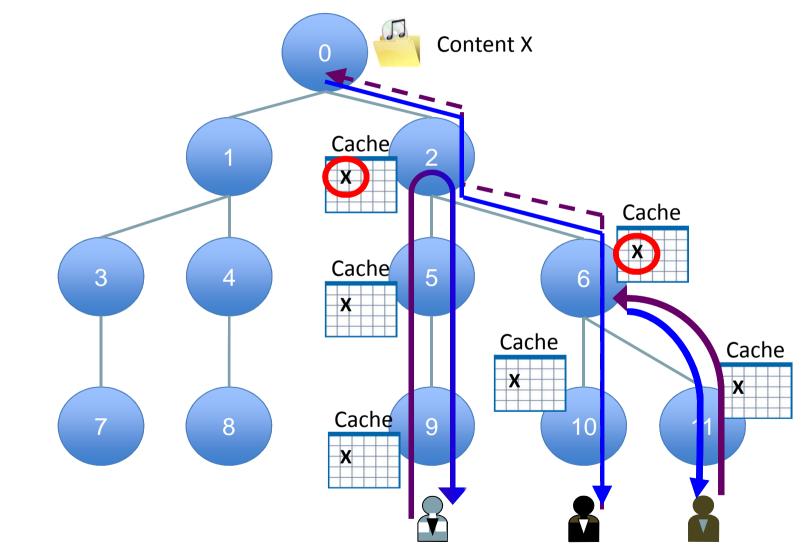
Europe:

- 4WARD/SAIL NetInf Network of Information
- PSIRP/PURSUIT PubSub Publish Subscribe Routing
- UCL COMET CMP Content Mediation Plane
- US:
 - Berkeley **DONA** Data-Oriented Network Architecture
 - Xerox PARC CCN/NDN Content-Centric Networking / Named Data Networking

Also various other research activities worldwide

Network of Information (NetInf)

- Started in the EU project 4WARD and was continued in its follow-on project SAIL
- Both one-phase and two-phase approaches
 - Two-phase evolutionary approach uses a hierarchy of DHTs well developed
 - One-phase radical approach less-well developed


Content-Centric Networking (CCN)

- Originated by Van Jacobson
- One-phase approach through Interest/Data packets flowing in a "reverse ack/data TCP-style"
 - Data packets are cached <u>everywhere</u> along the delivery path (Cache Everything Everywhere – CE²) as they may be useful to other consumers
 - Least Recently Used (LRU) packet discard policy
 - Hierarchical naming scheme
- CCNx implementation is publicly available while the NSF NDN project looks at more general CCN-related research issues

CCN-like Universal In-Network Caching

CNSM2013 Keynote - 20

Universal In-Network Caching Issues

• Assuming an average cache size of 10Gb per router, the time in cache before dropping is as follows:

LINK	LINK	1-sec of	SECS OF TRAFFIC IN
NAME	SPEED	TRAFFIC	A 10GB CACHE
OC-24	1,2 Gbps	$\sim 0.15~\mathrm{GBs}$	~ 64 secs
OC-48	2,4 Gbps	$\sim 0.31 \text{ GBs}$	~ 32 secs
OC-192	9,9 Gbps	$\sim 1.25 \text{ GBs}$	\sim 4 secs
OC-768	39,8 Gbps	$\sim 5 \text{ GBs}$	~ 2 secs
OC-1536	79,6 Gbps	$\sim 10 \text{ GBs}$	$\sim 1 \mathrm{sec}$
OC-3072	159,2 Gbps	$\sim 20~{ m GBs}$	$\sim 0.5~{ m secs}$

- Indiscriminate universal caching as in CCN (CE²) can be unnecessarily costly and suboptimal
 - Cached content may be replaced before getting a hit

Basic ICN Conventions

- Request-response at the chunk/packet level
 - Similar to HTTP-GET but at the network layer
- Explicitly named content chunks/packets
 - Named content enables in-network caching
- Name-based routing (in native approaches)
 - Hierarchical, flat or mixed names

In-Network Caching Challenges

Cache Placement

- Where is it best to put caches?

Content Placement

- Which content should go where?

• Request-to-cache routing

- How to find cached contents?

UCL

Placement: Cache Less for More (CL4M)

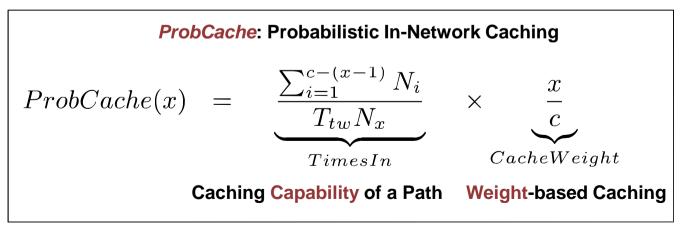
- Considering the simple topology above, only caching at node v₃ is meaningful in terms of cache hits
 Content cached elsewhere will be simply eventually evicted
- By strategically caching the content at "better" node(s), we can decrease the cache eviction rate and increase cache hit
 - Note that node v₃ is on all the shortest paths from all clients to the server, same as v₁ and v₂ further upstream

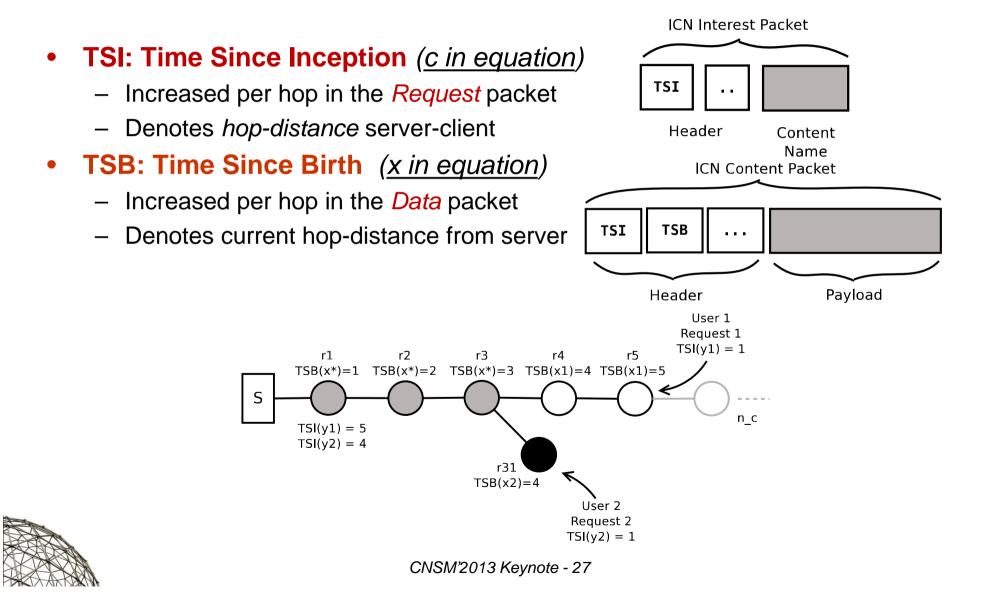
UCL

Placement: Cache Less for More (cont'd)

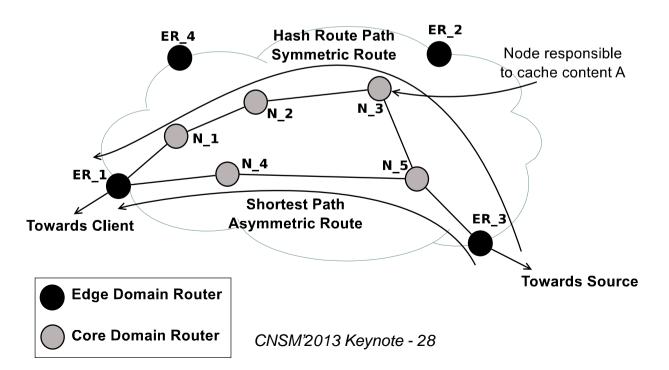
 Betweenness centrality: measures the number of times a specific node lies on the content delivery path between all pairs of nodes in a network topology.

betweenness centrality,
$$C_B(v) = \sum_{i \neq v \neq j \in V} \frac{\sigma_{i,j}(v)}{\sigma_{i,j}}$$


- The network management system calculates the betweenness centrality C_B of every node and "tells" the node about it
- The highest C_B is recorded in the header of the request packet
- Response packets/chunks are cached only in nodes whose $\rm C_B$ matches the highest value recorded in the header
- Substantial performance improvement w.r.t. "cache everything everywhere", best paper award in IFIP Networking 2012

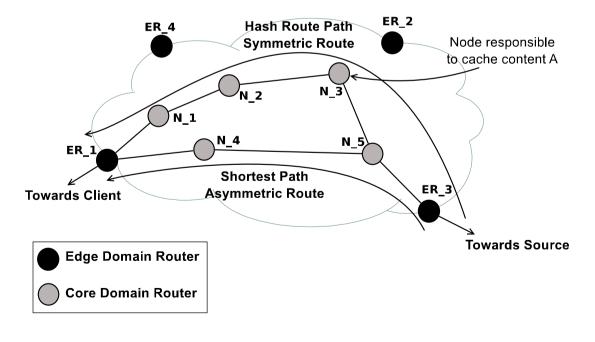

Placement: Probabilistic Caching

- The aim is to achieve fair content multiplexing along a path and make sure all flows get "equal" cache treatment
 - ✤ By CE² we can accommodate content of only few flows
 - Ideally, we would only like to cache contents of a flow only once along the path so that we achieve "fairness"
- A mathematical formula based on the cache capability (path resources) decides probabilistically where to cache
 - Excellent improvement, highly cited paper in SIGCOMM ICN 2012


Placement: Probabilistic Caching (cont'd)

Routing: Hybrid Hash Routing

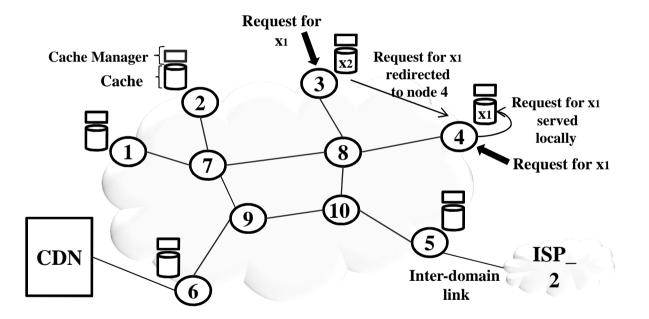
- Hash calculated at edge and request redirected accordingly
 - If content not in cache, request forwarded further towards source
- **HR Symm:** Request and content are following the same (non shortest) path content gets cached in responsible node
- **HR Asymm:** Content follows shortest path back to client content is not cached in this domain
- **HR Multicast ("Twocast"):** content is **replicated** at the edge router and sent both to client through shortest path and to responsible cache



Routing: Hybrid Hash Routing (cont'd)

• HR Hybrid Multicast:

- If DSM = (d(ER1-N3) + d(N3-ER3)) d(ER3-ER1) > 0, => HR_Multicast
- If DSM = (d(ER1-N3) + d(N3-ER3)) d(ER3-ER1) < 0, => HR_Symmetric
- Very good performance, recent paper in ICN SIGCOMM 2013



Placement: ISP as a Limited Capacity CDN

 Limited caching at network edge can strategically cache popular content, alleviating network load and improving QoE

- This requires CDN-ISP cooperation, already happening
 - Paper in this CNSM in the Performance Management session

Key Publications

Architectural papers:

- CURLING: Content-Ubiquitous Resolution and Delivery Infrastructure for Next Generation Services
 - » IEEE Communications, Vol. 49, No. 3, March 2011
 - » <u>http://www.ee.ucl.ac.uk/~gpavlou/Publications/Journal-papers/Chai-11a.pdf</u>
- Internet-Scale Content Mediation in Information-Centric Networks
 - » Invited paper that opens the Annals of Telecommunications special issue on Networked Digital Media, Vol. 68, No. 3-4, April 2012
 - » http://www.ee.ucl.ac.uk/~gpavlou/Publications/Journal-papers/Pavlou-12a.pdf
- COMET: Content Mediator Architecture for Content-Aware Networks
 - » Future Network and Mobile Summit 2011, Warsaw, Poland, June 2011
 - » <u>http://www.ee.ucl.ac.uk/~gpavlou/Publications/Conference-papers/Garc-11.pdf</u>

Key Publications (cont'd)

Caching papers:

- Modelling and Evaluation of CCN-Caching Trees
 - » Proc. IFIP Networking, Valencia, Spain, May 2011
 - » <u>http://www.ee.ucl.ac.uk/~gpavlou/Publications/Conference-papers/Psar-11.pdf</u>
- Cache "Less for More" in Information-Centric Networks
 - » Proc. IFIP Networking, Prague, Czech Rep., May 2012, Best Paper Award
 - » <u>http://www.ee.ucl.ac.uk/~gpavlou/Publications/Conference-papers/Chai-12a.pdf</u>
- Probabilistic In-Network Caching for Information-Centric Networks
 - » Proc. Sigcomm ICN, Helsinki, Finland, August 2012
 - » <u>http://www.ee.ucl.ac.uk/~gpavlou/Publications/Conference-papers/Psar-12.pdf</u>
- Hash Routing Schemes for Information-Centric Networks
 - » Proc. Sigcomm ICN, Hong Kong, August 2013
 - » http://www.ee.ucl.ac.uk/~gpavlou/Publications/Conference-papers/Saino-13c.pdf
- More Control Over Network Resources: an ISP Caching Perspective
 - » Proc. CNSM, Zurich, Switzerland, October 2013

Previous and Ongoing UCL Projects

 EU FP7 COMET (Content Mediator Architecture for Content-Aware Networks): Jan 2010 – Mar 2013, masterminded by UCL who was the technical leader

http://www.comet-project.org/

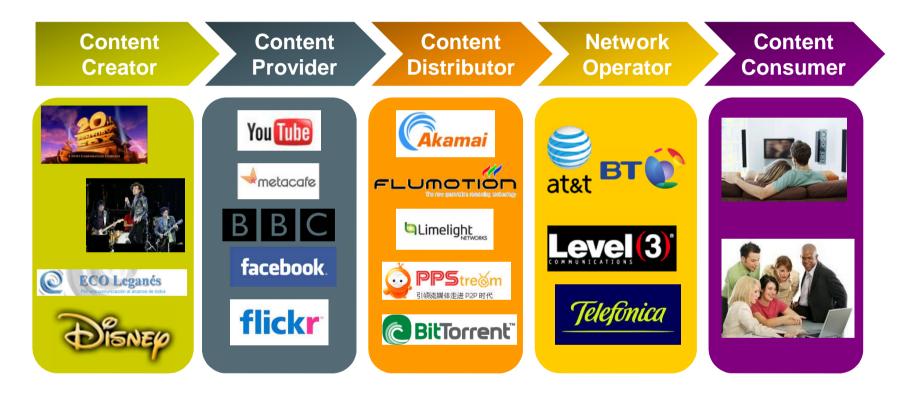
• EU-Japan FP7 GreenICN (Green Information Centric Networking): Apr 2013 – Mar 2016, led by Univ. of Goettingen

http://www.greenicn.org/

 UK EPSRC COMIT (Active Content Management at Internet Scale): Jan 2014 – Dec 2016

ICN Research Group in the IRTF

- Recently established group brings together ICN researchers, exchange research results, create a common ICN framework and feed input to existing IETF WGs
- Research topics that are addressed:
 - ICN naming schemes
 - Scalable name resolution for flat names
 - Scalable routing
 - Protocol framework
 - Security
 - API / application design
 - Business, legal and regulatory framework
- Also ITU-T recommendation Y.FNDAN "Framework of Data Aware Networking for Future Networks"


Key ICN Challenges

- Naming intricately linked with resolution and IDbased routing, so essential to get it right
- Scalability cope with at least 10¹⁵ information objects
- Security per object, privacy concerns given that the network "sees" the information objects, spam control
- Manageability, real-time usage data to drive e.g. opportunistic caching based on content popularity
- Incremental deployment, the ability to gradually migrate without obliterating existing IPv4/v6 infrastructure
- Incentives and novel business models to engage involved stakeholders

ICN Could Make This Much Better!

• ICN can provide tangible benefits to most stakeholders in an Internet that will be engineered according to its prevailing use

